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∗∗Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
‡Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warszawa, Poland

Abstract. The nanomechanical properties of nanostructural carbonaceous-palladium films are studied. The nanoindentation
experiments are numerically using the Finite Element Method. The homogenization theory is applied to compute the properties
of the composite material used as the input data for nanoindentation calculations.
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INTRODUCTION

We study nanostructural carbonaceous-palladium films (C-Pd films) by means of a numerical simulation of the
nanoindentation experiments. Nanoindentation method is designed to measure the mechanical properties of materials
such as nanohardness and reduced modulus of elasticity of ultra thin layers.

C-Pd films studied here by nanoindentation were obtained by Physical Vapour Deposition method. These films are
built of nanograins of palladium embedded in carbonaceous matrix (see [1]). Knowledge of the mechanical properties
of a new type of material is very important because of practical applications of films. C-Pd films could be applied as
active layer in many types of sensors due to their chemical, mechanical and physical properties connected to a presence
of palladium nanograins and carbonaceous matrix structure. The experimental results of the nanoindentation obtained
for several C-Pd films were presented in [2].

The material studied here is a two-phase inhomogeneous nanocomposite material, in which the volume of inhomo-
geneities is very small in comparison with the volume of the material. The numerical study of such materials presents
a very difficult task. Hence to simplify the computations we propose to model this material as a homogeneous one
having the same properties. To that end we apply the homogenization technique to compute numerically the estimates
of the unknown parameters of C-Pd film: Young’s modulus and Poisson’s ratio, assuming that the material is isotropic.

The results obtained by the homogenization method are used as the initial conditions for calculation the nanome-
chanical properties of the C-Pd film. We use the Finite Element Method for the numerical simulation of the nanoin-
dentation experiment. FEM gives many opportunities to study an influence of the form and composition of a material
on its mechanical properties. It allows for wider investigations of materials from macro- to nanoscale. For the FEM
modelling of nanoindentation experiment, we apply the standard Oliver-Pharr method [3] for the indenter. The prelim-
inary FEM study demonstrated that this method can be applied to simulate the nanoindentation experiment and used
to fit experimental load-displacement data obtained in the nanoindentation test.

The computations are performed using the ANSYS program (Ansys, Inc). The materials are modelled as isotropic,
elastic solids. The program iteratively computes the best fit of the nanomechanical parameters of the C-Pd film starting
from the initial data obtained by homogenization method.

For the detailed description of nanotechnology and nanoindentation we refer the reader to [4, 5, 6].
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MODEL OF NANOINDENTATION EXPERIMENT

As we already mentioned the C-Pd film is modelled as homogeneous isotropic elastic solid using the Hooke’s law
σ = ae, where σ is the stress, a is the elastic modulus of the material and e is the strain that occurs under the given
stress (cf (2)). In our model the C-Pd film is deposited on a glass substrate and is indented by means of a diamond
indenter as shown in Fig. 1.

FIGURE 1. Axisymmetric model of the C-Pd film and indenter tip

The thickness for the C-Pd film is 2 μm and the glass substrate is 6 μm. In order to eliminate the influence of
substrate effects on the results in the model the film of more thickness was used comparing to the actual size. In
order to properly simulate the nanoindentation experiment a contact analysis was applied. For this purpose, contact
elements were placed along the top surface of the film and target elements were used along the bottom surface of the
tip. The contact is assumed to be frictionless. The indentation was simulated by applying the displacement boundary
conditions in the y-direction to the nodes along the upper surface of the tip. The top surface of the tip was constrained
in all directions. Since the problem possesses symmetry along the y-axis, only 1/8 of the geometry was modelled.
Displacements along the symmetry planes were constrained. As a result of calculations we obtain a force-displacement
curve. Force and penetration depth diagram provides information about e.g. the elastic and plastic deformation with
increasing and decreasing load and permits to calculate nanohardness and reduced modulus depending on penetration
depth.

HOMOGENIZATION

We briefly describe the mathematical model of isotropic, elastic solid used in the homogenization procedure. We treat
the C-Pd film as a linear elastic body consisting of isotropic material, which occupies a region Ω ∈R

3. The governing
equation of linear elasticity for such material in an equilibrium can be written in the form

∂σi j

∂x j
+ fi = 0 in Ω, (1)

where σ = (σi j) is the stress tensor and f = ( fi) is the external force field. The proper boundary conditions are assumed
according to the previous section. We use the standard Hooke’s law as the constitutive equation relating stresses and
strains

σi j(u) = ai jkmekm(u), (2)

where ai jkm denotes the elasticity tensor end ekm is the strain tensor relating strains and displacements u = (ui) as
follows

ekm(u) =
1
2

(
∂uk

∂xm
+

∂um

∂xk

)
. (3)
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In the considered case of the isotropic material the elasticity tensor can be written as follows

ai jkm = λδi jδkm +μ(δikδ jm +δimδk j), (4)

where λ and μ are known as Lamé constants related to the Young’s modulus E and Poisson’s ratio ν by the formulas

λ =
νE

(1+ν)(1−2ν)
, μ =

E
2(1+ν)

. (5)

Now we briefly describe the homogenization technique used to compute the mechanical parameters describing the
C-Pd film as a homogeneous material. For detailed study of the homogenization theory we refer the reader to [7, 8, 9].

The C-Pd films are built of nanograins of palladium embedded in carbonaceous matrix, hence the two-dimensional
plane cut of the material can be schematically seen as in Fig. 2 (we present the 2-d picture only for the simplicity of
visualisation). In the ideal case such composite material can be treated as having the periodic structure (see Fig. 3 for
2-d schematic picture).

FIGURE 2. Schematic 2-d representation of the nanocomposite material (grey colour - carbonaceous matrix, white colour - Pd
nanograins)

FIGURE 3. Periodic structure modelling the material (grey colour - carbonaceous matrix, white colour - Pd nanograins)

In order to apply the homogenization method we assume the C-Pd film is characterized by such periodic microstruc-
ture. It means that the large body with a characteristic dimension L consists of a finite number of periodic cubic cells
with characteristic dimension l, where l � L; we introduce a small parameter ε = l/L. Moreover we assume that the
periodic cell contains palladium nanocrystal in the form of a smaller cube surrounded by carbon.

The structure of C-Pd film imposes the following formula for the elasticity tensor

ai jkm(x) = aPd
i jkmχPd(x)+aC

i jkm(1− χPd(x)) x ∈Ω, (6)

where aPd
i jkm and aC

i jkm denote the elasticity tensor of palladium and carbonaceous matrix respectively (both defined
by (4) with respective values of Lamé constants) and χPd is a characteristic function of the region occupied by the
palladium.

In a periodic setting we introduce the microscopic variable y = x/ε (while x is referred to as macroscopic variable)
and assume that aε

i jkm(x) = ai jkm(x/ε) = ai jkm(y) is Y -periodic, i.e. periodic with respect to the y-variable with a period

being a unit cell Y = [0,1]3.
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Thus we now study the problem (cf (1) and (2) combined)

∂
(
aε

i jkmekm(u)
)

∂x j
+ fi = 0 in Ω. (7)

The essential point of the homogenization method is to eliminate the microscopic variable by passing to zero with
the small parameter ε (cf [8]). Applying the homogenization procedure we obtain the macroscopic version of the
equations (7) for the homogenized material

ahom
i jkm

∂ekm(u)
∂x j

+ fi = 0 in Ω, (8)

where
ahom

i jkm =
∫

Y
ai jkm(y)−ai jrs(y)ei jrs(ω

rs)dy (9)

is the effective (homogenized) elastic tensor, which is computed using high order numerical quadrature. The unknown
Y -periodic vector functions ωrs are determined solving numerically by FEM the following local problem with Y -
periodic boundary conditions

∂
(
ai jkm(y)ekm(ω

rs)
)

∂y j
=−

∂ai jrs(y)

∂y j
y ∈ Y. (10)

Now assuming that the homogenized material is isotropic the estimates of Young’s modulus and Poisson’s ratio of
the C-Pd film are computed from the homogenized elastic tensor ahom

i jkm (cf (4) and (5)).

CONCLUSIONS

In this work we propose the numerical simulation method for the nanoindentation experiment. The necessary input
data for simulations is obtained by the homogenization method. We use FEM to compute the effective (homogenized)
parameters of C-Pd films and to simulate the nanoindentation process. The preliminary numerical results are in
satisfactory agreement with the experimental ones. This shows the usefulness of the averaging procedure we propose
for the considered problem and justifies the method used for the numerical simulations.

ACKNOWLEDGMENTS

This research is co-financed by the European Regional Development Fund within the Innovative Economy Operational
Programme 2007-2013 (title of the project ”Development of technology for a new generation of the hydrogen and
hydrogen compounds sensor for applications in above normative conditions” No UDA-POIG.01.03.01-14-071/08-06).

REFERENCES

1. E. Czerwosz, E. Kowalska, H. Wronka and J. Radomska, Patent notification, (2008) nr P384 591
2. J. Rymarczyk, E. Czerwosz and A. Richter, Cent. Eur. J. Phys. 9(2), 300–306 (2011)
3. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7(6), 1564–1583 (1992)
4. A. Richter, R. Ries, R. Smith, M. Henkel and B. Wolf, Diamond and Related Materials 9, 170-184 (2000)
5. G. Timp, Nanotechnology, Springer, New York, 1999
6. A. C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, 2002
7. A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978
8. E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Springer-Verlag, New York, 1980
9. L. E. Persson, L. Persson, N. Svanstedt and J. Wyller, The Homogenization Method. An Introduction, Studentlitteratur, Lund,

1993

1905


