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Abstract. In this paper we propose a model of electric current flow through one-dimensional palladium-carbon nanostructure (nanowire)
and compare the results of numerical computations with the experimental data. We focus on two aspects: 1) calculation of the current flow
through the nanowire model, 2) determination of the macroscopic parameters in the nanocomposite in our model. Because of a complex
micro-geometry of a nanowire, we apply the homogenization method to perform the numerical computations.
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1. Introduction

In many physical and material issues we meet the problem
of finding effective physical properties for composite or non-
homogeneous materials. Small regions of non-homogeneity of
the material contained in its whole volume, but with diameters
much smaller than this volume, impede or even prevent find-
ing analytical solutions to the problems such as charge trans-
port, heat transfer or stress transfer. Nanocomposites are ex-
amples of such materials. The regions of homogeneity in this
materials have different compositions, structures and proper-
ties and their sizes are from a few to several hundred nanome-
tres. In particular, a large number of regions with sizes of the
order of a few nanometres has a strong influence on the effec-
tive properties of the whole material and their dissimilarity to
the characteristics of the material in a macroscopic form. For
instance, the existence of nanograins of various diameters can
be the cause of a change in the mechanical properties of the
material. In [1] the authors analyse the changes of mechanical
properties caused by e.g. fragmentation of crystallites of ma-
terial to the size of nanometres. It is a result of the increase
of a number of boundaries of grains, a number of triple junc-
tions and the increase of disorder in existing layers. In [2]
and [3] the authors use the notion of coefficient of nanograins
packing of material. The small packing coefficient means that
the nanograins are located far away from each other. The ef-
fects mentioned above also influence a change of macroscopic
properties such as charge or heat transfer.

For the phenomenon of the transfer of electric charges in
nanocomposite materials, there are various models used con-
nected with the classical (diffusion) or quantum (tunnelling)
approach. In this paper we propose the model of electric
charges transfer in the nanocomposite material based on a

diffusion equation with the homogenization theory applied to
obtain the macroscopic properties of the nanocomposite ma-
terial. We assume that the considered material is isotropic in
all respects. This assumption allows us to consider only the
one-dimensional problem (in arbitrary direction with respect
to the geometry of the material). The cross-section of such a
material is shown in Fig. 1a and a model of it in Fig. 1b.

a)

b)

Fig. 1. a) Image of nanocomposite palladium-carbon layer (dark grey
spots depict palladium nanocrystals), b) two-dimensional model of

the nanocomposite material
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The model shown in Fig. 1b was constructed under the
assumption that the nanocomposite consists of two materials:
palladium (white circles) in the form of nanocrystallites and
carbon (grey region) forming a matrix in which the nanograins
of palladium are embedded. The problem of the transport of
electrons through such material can be considered, similarly
as in [2,3], as a flow of electrons along the conductivity paths
formed by nanocrystallites.

The resistivity ρ(d, f, A) along such path is a function of
a packing coefficient f , a coefficient A denoting agglomer-
ation of nanograins and the diameter of a molecule d. This
description is relevant to the model shown in Fig. 1b. For
the considered two-component material, the two-dimensional
problem can be reduced to the one-dimensional problem (see
Fig. 2).

Fig. 2. One-dimensional model of the two-component material

An important assumption, which we make in our mod-
el, is the existence of the effective electrical conductivity (or
resistivity) and substitution of this idea for the idea of con-
ductivity paths. The key point is that we may replace two-
component nanocomposite material with the homogeneous
isotropic one. This assumption allows to consider the problem
in one-dimensional case.

2. Mathematical model

In the proposed one-dimensional model, the nanowire has
periodic micro-structure consisting of palladium nanocrys-
tals embedded in a carbonaceous matrix. We assume that the
nanowire is composed of the finite number of identical cells
(comprising palladium and carbon) of the length l periodical-
ly repeated on the interval [0, L]. In every cell the palladium
nanocrystal occupies the subinterval [0, λl], 0 < λ < 1, and
the rest of the cell is occupied by the carbon (see Fig. 2).

We model the electric current flow through the nanowire
using the Laplace equation. Let the function n : [0, L] → R

denotes the electric field potential in the material. It satisfies
the following diffusion equation:

d
dx

(
σ(x)

d
dx

n(x)

)
= 0 (1)

with the boundary conditions n(0) = V0 and n(L) = 0, where
V0 is the voltage applied to the nanowire and the electrical
conductivity of the nanostructure σ : [0, L] → R is given
by σ(x) = σPdχλ(x) + σC(1 − χλ(x)), with the constants
σPd and σC denoting the electrical conductivity of palladium
nanocrystals and the carbonaceous matrix respectively, and
χλ is the characteristic function of the region occupied by the
palladium. The current density J : [0, L] → R in the material
is given by

J(x) = −σ(x)
d

dx
n(x).

The above model of a palladium-carbon nanostructure still
has a complex micro-geometry. Hence to simplify the study
further we apply the asymptotic homogenization method (see
Sec. 3) to the Eq. (1). We get the macroscopic electrical con-
ductivity of the nanowire given by (cf. (16))

σ∗ =
σPdσC

λσC + (1 − λ)σPd

(2)

and the analytical formula for the current density (constant
along the nanowire) J(x) = σ∗ V0

L
, x ∈ [0, L].

In the physical experiments the nanomaterial of the shape
of a narrow rectangle was used as a model of one-dimensional
nanowire. Thus we can calculate the electric current flow
through the nanowire using the formula

I = sJ = sσ∗
V0

L
, (3)

where s is the cross-section of the nanomaterial.
The proposed model allows to determine the palladium

content in a nanowire using only the experimentally mea-
sured resistance of the material. To this end we calculate the
experimental electrical conductivity of the nanowire

σe =
L

sR
, (4)

where s and R denote the cross-section and the resistance
of the material, respectively. Thus it suffices to derive the
dependence of λ on σ∗ from Eq. (2).

We take the experimentally measured value of conduc-
tivity σe as the macroscopic conductivity of the nanowire
σ∗ := σe and invert the formula (2) for λ to get the palladi-
um content in the nanowire model

λ̃ =
σPd(σe − σC)

σe(σPd − σC)
. (5)

From the Eq. (2) we can also calculate the dependence of
the model electrical conductivity of the carbonaceous matrix
on the experimental conductivity σe of the nanomaterial

σ̃C =
(1 − λ)σPdσe

σPd − λσe

(6)

3. Homogenization method

Having in mind a complex microstructure of Pd-C nanocom-
posite we apply a homogenization method to study the prob-
lem. Homogenization means deducing the macroscopic equa-
tions and relations from properties of its microscopic con-
stituents. The reader can find methods of the homogenization
theory in [4] and [5].

In the paper [6] a homogenization was performed for an
electric conductor with material coefficients being periodic
functions of spatial variables. In a description of the electric
conductivity the Joule-Lenz heat production was taken into
account. Hence, in reality, two cross-linked equations, one for
the electric current and one for the heat were considered. An
assumption of the stationary flow of the electric current per-
mitted to preserve the qualitative form of the primary system
of equations.

We assume that the considered body is characterized by
a periodic microstructure. It means that a large body with a
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characteristic dimension L consists of a number of period-
ic cells whose characteristic dimension is l. Let l

L
≪ 1; we

introduce into our considerations a small parameter ε = l/L.
The homogenization method [4, 5, 7, 8] means finding an

asymptotic solution of the equation

Aεu
ε
≡

d

dx

(
Aε(x)

duε

dx

)
= f(x), (7)

where Aε is a second order differential operator of diffusion
with variable coefficients Aε(x) namely,

Aε =
d

dx

(
Aε(x)

d

dx

)
.

In a periodic setting we write Aε(x) = A
(x

ε

)
and we

will identify
x

ε
= y, where y is referred to as a microscop-

ic variable. The microstructure is periodic with the period
ε, if we extend the body to the whole space. So we have

A
(x

ε

)
= A(y), where the function A is periodic with re-

spect to microscopic variable y. In other words, if we have a
function A(y) defined on (0, 1) we extend the function A to
R by a periodic way, namely A(y) = A(y +1), for all y ∈ R,
for one-dimensional structures.

3.1. Two-scale asymptotic expansion. We distinguish two
scales: macroscopic and microscopic; the former is a scale of

x called macroscopic variable, and the latter y =
x

ε
, called a

microscopic one.
The homogenization procedure consists in the elimination

of the microscopic variable by the appropriate averaging or
by passing to zero with a small parameter ε.

In order to obtain a macroscopic description of the prob-
lem, we look for a solution uε of the problem (7) in the form
of a two-scale asymptotic expansion

uε(x) = u0(x) + εu1(x, y), (8)

where for x ∈ [0, L] the term u1(x, y), is a periodic functions
with respect to microvariable y ∈ Y = [0, 1]. Usually Y is
referred to as a cell of periodicity.

We recall that the rule of differentiation is as follows
d

dx
=

∂

∂x
+

1

ε

∂

∂y
.

Thus we have

Aεu
ε
≡

d

dx

(
A(y)

d

dx

)
(u0 + εu1)

=
(
ε−2

A0 + ε−1
A1 + A2

)
(u0 + εu1),

where

A0 =
∂

∂y

(
A(y)

∂

∂y

)
,

A1 =
∂

∂y

(
A(y)

∂

∂x

)
+

∂

∂x

(
A(y)

∂

∂y

)
,

A2 =
∂

∂x

(
A(y)

∂

∂x

)
= A(y)

∂2

∂x2
.

Equating the power terms of a small parameter ε we obtain
the following system of equations:

A0u1 + A1u0 = 0, in Y = (0, 1), (9)

A1u1 + A2u0 = f in Y. (10)

Now we deduce from (8) and (9) that

∂

∂y

(
A(y)

∂u1(x, y)

∂y

)
= −

dA(y)

dy

du0(x)

dx
. (11)

Linearity of the last equation allows us to assume that the
solution u1(x, y) may be represented in the form

u1(x, y) = N(y)
du0(x)

dx
+ ũ(x), (12)

where ũ(x) is an arbitrary function depending on x. Applying
(12) to (11) we obtain

d

dy

(
A(y)

dN(y)

dy

)
= −

dA(y)

dy
. (13)

This is a local equation defined on the periodicity cell Y to
an unknown (auxiliary or local) function N(y), periodic with
respect to the microscopic variable y.

We observe that the Eq. (13) may be rewritten as

d

dy

(
A(y)

(
1 +

dN(y)

dy

))
= 0.

The solution of the equation exists, so in fact we have

uε(x) ≃ u0(x) + εu1(x, y) = u0(x) + εN(y)
du0(x)

dx
.

Taking into account (10) we can derive the macroscopic equa-
tion corresponding to (7).

The Eq. (10) may be written in the form
∫

Y

(A1u1 + A2u0) dy = f(x). (14)

Applying (12) to (14) we obtain



∫

Y

(
A(y) + A(y)

dN

dy
(y)

)
dy


 d2u0

dx2
= f. (15)

It is shown, e.g. [4, 5], that the term in square brackets is
a harmonic mean of the known function A(y). However we
note that it holds for 1D case only. Thus the simplest version
of (15) may be written as follows

A∗
d2u0

dx2
= f in (0, L)

and the homogenized diffusion coefficient has the form

A∗ =




1∫

0

1

A(y)
dy




−1

. (16)

The homogenization method is commonly used to obtain
macroscopic relationships knowing the properties of the mi-
croscopic behaviour of the medium. Many physical and math-
ematical problems can be solved using this method, we will
mention only a few: fluid flow, thermal flow, current flow,
porous media, see [9, 10].
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4. Comparison with experiments

In the experiments the resistance and the current flow through
the wires were measured. The wires were placed on a surface
of a slab with the electrical connectors. The scheme of the
experiment is given in Fig. 3. This figure also shows the com-
position of nanostructural C-Pd film built of palladium and
carbonaceous nanograins. Such film in a form of thin wire
was obtained by the PVD (Physical Vapor Deposition) method
on a glassy substrate. The details of preparation method were
described in paper [11].

Fig. 3. The scheme of the wire with electrical connections and the im-
age of a layer of nanomaterial (dark regions are palladium nanocrys-

tals)

The preliminary results on the numerical study of 1D Pd-
C structures using the homogenization method we presented
in our first paper [12].

4.1. Modelling of current flow. In this experiment we ob-
served the electric current flow through the wire. The sam-
ple of the length L = 19.6 mm with the cross-section
s = 3 · 10−4 mm2 (width 1 mm and thickness 300 nm) was
used in physical experiments. The same dimensions were also
used in the numerical computations. We assumed the electri-
cal conductivity of palladium1 and carbonaceous matrix to be
σPd = 9.5 · 106 (Ωm)−1 and σC = 9.86 · 10−4 (Ωm)−1 (the
value for fullerite C602), respectively.

The experimental value of the electrical conductivity, ob-
tained by (4), of the considered sample of the nanomaterial
was σe = 1.054 · 104 (Ωm)−1. This value was used in (5),
which gave the model palladium content in the wire λ̃ = 1.0.

In Fig. 4 we show the dependency of the current flowing
through the studied wire of the nanomaterial on the applied
voltage. Circles denote the experimentally measured values.
The values computed numerically are shown by the line. In
all the numerical computations we used the experimentally
measured value of the conductivity σe. One can observe a
good agreement between the experimental data and the nu-
merical results of computations in our model approximately
up to the value of the applied voltage V0 ≈ 2 V (the small
deviations may be due to the inhomogeneities in the material

or the measurements errors). The reason for a deviation ob-
served for the voltage higher than 2 V is not clear and may
need another theoretical approach. It is possible that the con-
ductivity paths are formed by palladium nanograins at higher
voltages.

Fig. 4. The electric current in the wire as a function of applied
voltage: dots – experimental data, solid line – numerical results

4.2. Modelling of macroscopic parameters. In this experi-
ment we determined the macroscopic parameters of nanocom-
posites in our model: the palladium content and the conduc-
tivity of carbonaceous matrix.

We present the results for three samples of nanomateri-
al with different content of palladium, used in the physical
experiments. All samples were of the length L = 10 mm
with the cross-section s = 3 · 10−4 mm2 (width 1 mm and
thickness 300 nm). In Table 1 we give the measurements of
resistance R and palladium content for all samples and the
electrical conductivity σe computed using (4).

Table 1
Parameters of wire samples (experimental data)

Sample Pd content
[%]

Resistance R

[Ω]
Conductivity σe

[(Ωm)−1]

I 9.87 1.7 · 107 1.96

II 13.3 2.5 · 106 1.33 · 101

III 27.31 5 · 102 6.67 · 104

In all the computations we assumed, as in the previous
subsection, the electrical conductivity of palladium σPd =
9.5 · 106 (Ωm)−1. However the conductivity of carbonaceous
matrix vary widely with the allotropic form of carbon and it
is not known for the carbon form being the component of the
considered nanomaterials. Thus we performed the computa-
tions for a number of carbon allotropes for which the known
electrical conductivity values are given in Table 2.

Using (2) and the physical contents of palladium given in
Table 1 we computed the electrical conductivity of nanocom-
posite samples in our model for a different carbon allotropes
(see Table 2). We present the obtained values in Table 3.

1http://www.palladiumcoins.com
2http://sesres.com/PhysicalProperties.asp
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Table 2
Electrical conductivity of carbon allotropes [(Ωm)−1]

fullerite C60 nanotubesa amorphous carbonb graphitec

9.86 · 10−4 6.67 · 102 3.33 · 104 7.27 · 104

a http://en.wikipedia.org/wiki/Carbon nanotube
b http://hypertextbook.com/facts/2007/DanaKlavansky.shtml
c http://invsee.asu.edu/nmodules/Carbonmod/thermprp.html

Table 3
Electrical conductivity of nanocomposites in our model [(Ωm)−1]

Sample fullerite C60 nanotubes amorphous
carbon

graphite

I 1.094 · 10−3 7.400 · 102 3.693 · 104 8.059 · 104

II 1.137 · 10−3 7.693 · 102 3.839 · 104 8.375 · 104

III 1.356 · 10−3 9.176 · 102 4.575 · 104 9.973 · 104

Table 4 presents the palladium content in the samples
computed in our model for different carbon allotropes using
(5) and the physical values of conductivity from Table 1. We
note that in the case when the conductivity of the carbon al-
lotrope is greater than the conductivity of the sample it is not
possible to compute the palladium content coefficient. This is
denoted using dashes in Table 4.

Table 4
Pd content in samples for different carbon allotropes (dash denotes that the
conductivity of the allotrope is greater than the conductivity of the sample)

Sample fullerite C60 nanotubes amorphous carbon graphite

I 99.95% — — —

II 99.99% — — —

III 100% 99% 50% —

The considered model makes it possible to compute from
the formula (6) the unknown value of the electrical conduc-
tivity σ̃C of carbonaceous matrix using only the content of
palladium in a sample and the experimentally measured resis-
tance of the material. The computational results are presented
in Table 5.

Table 5
Electrical conductivity of carbonaceous matrix in wires in our model

Sample Conductivity σ̃C [(Ωm)−1]

I 1.767

II 1.156 · 101

III 4.855 · 104

5. Conclusions

In this paper we presented the method of calculation of the
electrical conductivity in a material composed of many al-
lotropic forms of carbon. This result is very important es-
pecially in the case of nanocomposite materials, where it is
difficult to determine this parameter experimentally.

It is reasonable to take into account for further investiga-
tions the effect of formation of conductivity paths by palla-
dium nanograins. This effect may change drastically the elec-
trical conductivity of nanocomposite in higher electric fields.

It may happen that the properties of nanocomposite mate-
rials are different from the properties of component homoge-
neous regions having characteristics similar to the ones of the

macroscopic counterparts. These properties depend strongly
on the sizes of the homogeneous regions. In the considered
case we have shown by calculations and experiment that clas-
sical diffusion equation describes well the electric current flow
in Pd-C nanocomposite.

We used in this paper the two-scale asymptotic expan-
sions method as a simple tool for calculations. However, more
sophisticated methods can be used, for example the gamma-
convergence method, see [13].
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